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The problem of the roll up of a two dimensional vortex sheet generated by a wing in an 
ideal fluid is phrased in terms of the streamfunction and the vortex sheet strength. A 
numerical method is used to calculate the time evolution of the vortex sheet hy adapting 
the “Cloud In Cell” technique introduced in solving many particle simulations in plasma 
physics (see J. P. Christiansen, J. Comprrtntiona/ Physics I3 (1973)). Two cases are con- 
sidered for the initial distribution of circulation, one corresponding to an elliptically loaded 
wing and the other simulating the wing with a fkap deployed. Results indicate that small 
scale behaviour plays an important part in the roll up. Typically, small scale perturbations 
result in small structures which evolve into ever increasing larger structures by vortex 
amalgamation. Conclusions arc given from a number of tests exploring the validity of the 
method. Rricfly, small scale perturbations are introduced artificially by the grid; but once 
the process of vortex amalgamation is well underway, the emerging large scale behaviour 
is relatively insensitive to the precise details of the initial perturbations. Since clearly 
dcficd structures result from the application of this method, it promises to aid consider- 
ably in understanding the behaviour of vortex wakes. 

I. IF~TR~DUCTION 

When a wing of finite span moves at a small angle of attack through the air, it 
sheds vorticity at its trailing cdgc which results from the f?ow of air around the wing 
tip, driven by the pressure difference between the top and bottom surface of the wing. 
If the speed of the wing is constant and the effect of the viscosity of the air is negligible, 
vortex lines starting from the trailing edge form a steady surface relative to the wing, 
which is sharply defined and represents a vortex sheet. 

The intractible problem of dctcrmining the location of this three dimensional steady 
vortex sheet is simplified by considering the sheet two dimensional and unsteady 
through the relation z = Ut (see Fig. 1). This assumption ignores the curvature of 
the vortex lines and their termination at the trailing edge, and the relation z ; Ut 

assumes there is no variation of the velocity parallel to the z axis. This proves reason- 
able when sufXciently far downstream of the wing, and Moore and Saffman [l] have 
provided formal justilication. The variation of the vortex sheet strength shed at the 
trailing edge of the wing depends on the characteristics of the wing and becomes the 
initial condition for the unsteady problem. This paper examines two cases of initial 
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VORTEX SHEET ROLL UP 

FIG. 1, The geometries for the three dimensional steady flow 2nd two dimensional unsteadq- 
motion. 

vortex sheet strength; one relates to an elliptically Ioaded wing and the other simulates 
a wing with a flap deployed. 

Before introducing the method described in this paper, it is instructive to recall! 
previous attempts at solving the mode1 problem. For the elliptically loaded wing, the 
vortex sheet strength is initially infinite at the wing tip. The subsequent motion is 
the formation of a spiral at the wing tip with infinite arclength so that the singular 
nature of the initial flow is removed. Kaden [2] has presented the leading term of an 
asymptotic expansion describing the spiral and, more recently, further terms have been 
calculated [3, 41. However, the asymptotic expansion contains unknown parameters 
which are determined by the flow outside the spiral. In particular, the location of the 
spiral center is unknown. Thus a numerical procedure is required to fully determine 
the motion. 

In studying the Kelvin-Helmholtz Instability, Rosenhead [S] replaced the vortex 
s”heet by a finite collection of line or point vortices and considered their subsequent 
motion as marking out the vortex sheet. Westwater [6] was the first to apply this 
approach to the vortex sheet rollup behind a wing. With the advent of high speed 
computers, a number of researchers [7-lo] have continued this approach but an 
unsatisfactory feature of the results consistently emerges. The motion of the pain! 
vortices becomes chaotic in the region of the spiral. Different ad hoc modifications 
have been incorporated in an attempt to regularise the solution. Instead of point 
vortices, some authors [ll, 121 introduced vortices with small bQt finite area. The 
velocity field in these cases is finite everywhere, but the distortion of the vortices by 
their mutual interaction is ignored and gives an error difficult to assess. A finite 
number of point vortices cannot adequately resolve the details of a spiral especially 
near its center. Moore [13] has addressed this aspect of the numerical calculation by 
incorporating an amalgamation process at the wing tip vortex. His spiral appears 
smooth for greater times than other calculations and more closely resembles th.e 
required asymptotic nature. 

Unfortunately there has not yet been an adequate accounting of the errors intro- 
duced by these modifications. Fink and Soh [14] have pointed out that calculating the 
velocity at points on the sheet by considering them point vortices is not a good 
approx~matioll unless the points are evenly spaced in arclength. Consequently, they 
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proposed a method which introduces evenly spaced points at each time level. For the 
roll up behind an alliptically loaded wing they obtain results very similar to Moore’s 
[13], but this is a consequence of keeping the point closest to the spiral center fixed 
during the redefinition of points and assigning to it the vorticity necessary to conserve ) 
circulation. Thus, vorticity accumulates at this point in an ad hoc manner and this 
point becomes an approximation to the innermost turns of the spiral. 

Baker [15] has extended their work by taking some account of the curvature of the 
sheet when calculating its velocity, resulting in a higher order of accuracy. He applied 
the refined method to the sheet shed by a ring wing because there is no singularity 
associated with a wing tip, and so this case provides a definite test of the method. The 
truncation error in calculating the velocity of the vortex sheet is of order of the cube 
,of the spacing between points. There is no corresponding estimate for the truncation 
error when using point or discrete vortices. If a smooth, stable solution exists, in- 
creasing the number of points would lead to smaller corrections in the computed 
results. This is not the behavior observed irrespective of whether the basic or refined 
method is used. The vortex sheet’s motion is calculated with different numbers of 
points and the results are compared at some chosen time during the initial stages of 
roll up. As the number of points increases, the spiral nature of the roll up becomes 
more prominent but the outer turns distort and intersect one another. No consistent 
solution emerges; the problem appears ill-posed. 

Brown and van Dyke [35] also find that Fink and Soh’s method proves inadequate 
in calculating the vortex sheet motion associated with a wing with flaps deployed, and 
Sarpkaya [36] reports no substantial improvement when using their method instead of 
the method of point vortices for the roll up of vortex sheets shed from an inclined 
plate in a uniform flow. If we are to find reliable numerical procedures, we need to 
understand the cause of breakdown commonly obtained. There are several possibilities 
as follows. The stability of the vortex is generally uncertain. The plane, constant sheet 
has a known instability, the Kelvin Helmholtz Instability [16], where the modes with 
the smallest wavelength grow the fastest. However, the effects of curvature and stretch- 
ing of the sheet may be stabilising [17]. If the sheet is unstable, the numerical method 
will reflect this in the growth of round-off errors. In this case, the relevant problem is 
understanding the nonlinear development of the instability, and this requires a suffi- 
cient number of points to resolve the important modes. Alternatively, the numerical 
methods may be unstable independently of the stability of the sheet. The accurate 
calculation of the vortex sheet motion in the spiral region may require many points 
because of the close spacing between the turns and their large curvature. 

Many of these questions can be explored by increasing the number of points 
substantially. Adopting a difTerent procedure in calculating the vortex sheet velocity 
will also increase the breadth of inquiry and give useful information about the basic 
nature of its motion. This is also desirable for matters of economy. The computer 
time required to update the positions of N point vortices is O(N3) since the system is 
stiff with shortest time scale O(N-l), and this approach soon becomes expensive for 
large N. Adapting the “Cloud in Cell” technique ensures the calculation of the motion 
of many vorticity markers at reasonable cost. The purpose of this paper is to describe 
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the method and discuss the results obtained when applied to the roll up behind an 
elliptically loaded wing and behind a wing with a flap deployed. The conclusions from 
several tests to examine the accuracy and reliability of the method are also given, 

This technique has already been applied to a number of two dimensional ideal 
Ilnid flows [18, 191. These applications have yielded interesting results, in particular 
the behaviour of the interaction of finite sized vortex structures. Baker 1151 used this 
technique in studying the motion of vortex sheets. Subsequently Meng and Thomson 
[34] have used a similar approach but there is no attempt to explore the errors in their 
scheme other than by comparison with results obtained with discrete vortices. The 
present work is a continuation of the study of the roll up of vortex sheets started by 
Baker [I51 and it explores the validity of the “Cloud in Cell” technique for vortex 
sheet motion. 

II. THE METHOD 

Christiansen [18] was the first to report the use of the “Cloud in Cell” technique in 
studying the motion of a two dimensional, incompressible, inviscid and homogeneous 
fluid. A similar approach is used in this paper; the details are as follows. 

If Z/J is the streamfunction, w the vorticity, and U, v the velocity components, the 
equations of motion are 

vy = -co (1) 

The vorticity is discretised by introducing N markers, 

w = f r&x - XJ S(y - y,) 
n-1 

such that 

This reduces Eq. (3) to a set of ordinary differential equations, 

(4) 
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To obtain the streamfunction, a f?nite difference approximation is made to Eq. (1) on a 
rectangular grid, {x0 + (i - 1) H, , y. + (j - 1) I&}, 1 d i < N, , 1 < j < N, , 
where Hz, H, are the grid spacings assumed uniform in the x, y directions respectively. 

The vorticity is represented at the points (x, , vll) and so a redistribution scheme, 
known as “Cloud in Cell” or area-weighting, is introduced to assign values at the grid 
points and then Eq. (7) can be solved. Fig. 2 provides the geometry and notation of the 
redistribution scheme, 

w(k) = AJ,IH,H, (81 

where the A’s are the areas shown. This scheme conserves total vorticity and the 
hydrodynamic impulse (related to linear momentum), but the angular impulse is 
changed by an amount bounded by 0.25r (Hz + H,), where r is the total circulation. 

FIG. 2. The geometry and notion of the “Cloud in Cell” redistribution scheme. 

Eq. (7) is easily solved using a Fast Poisson Solver (the FACR(Z) method (201 
using a particular Fast Fourier Transform [21]). To determine the velocity of the 
markers, we calculate the velocity at the nearest four grid points with a central differ- 
ence formula, 

and then interpolate bilinearly. 
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The notation of Fig. 2 has been followed in Eq. (10). The markers are moved forwar 
in time by a finite difference approximation to Eq. (6). 

x,(t + At) = Xn(f> + u, &It (lla> 

y,(t f At) = y&) -+ II, At (1 lb) 

where Ar, the time step, is chosen to satisfy 

At < Min n ( 
Hz Hv u,, --). 

L’n 

This condition is an analogue to the condition required for explicit finite difference 
approximations to Eq. (3), and hence appears plausible. However, there is no evidence 
that Eq. (12) is required and a larger rl t may be permissible. In this way, the vorticity 
distribution at d + dt has been computed and the procedure repeats to give the motion: 
of the vorticity. 

Boundary conditions must be given at the grid edge for a unique soiution. The 
author used a particular Fast Foisson Solver which requires the value of # along the 
boundaries. These values of $J can be obtained in several ways. The author’s choice is 
to calculate local centroids of vorticity 

where m = I, 2,..., M = N/p. The velocity at the boundary is determined by regarding 
these local centroids as point vortices. Maskew [22] indicates that the resulting error 
is smaII when the boundary is a distance 1.5H away from the nearest .vortex ma.rker 
,(x,, , JJ.$ where His the maximum distance between adjacent local centroids (Z,,, : ya2). 
In fact, this is the criterion used to choose the location of the boundaries of the grid 
to minimize the region in which the solution of Eq. (1) is sought without loss of 
accuracy, given the number of local centroids. Keeping the boundaries away from the 
region of vorticity also ensures the conservation of vorticity, hydrodynamic imp&e 
and the Kirchhoff-Routh path function. 

Increasing the number of local centroids increases the accuracy but also the comput- 
ing time and so a judicious choice is required depending upon the problem at hand. 
To decrease computer time, the velocity is calculated at a selected number of grid 
points at the boundary and the rest of the values are obtained by interpolation using 
cubic sphnes [23]. The appropriate component of velocity .is integrated numeric& 
using the trapezoidal rule around the boundary to provide the streamfunction. Since 
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it is singlevalued, it must return to its starting value after a complete circuit around 
the boundary and this provides a check on the accuracy. For 40 local centroids in a 
mesh 129 x 129, the typical relative error is O(10-3). When the flow has a plane of 
symmetry, a boundary can be chosen along this plane. Since it is also a streamline, a 
prescribed constant value can be assigned to the streamfunction along this boundary. 

Hackney [20] describes an alternative method to determine the streamline at the 
boundary, which uses an expansion in the inverse of the distance from the center of 
the grid. The calculation of L coefficients of this expansion requires O(U?JQ 
computer operations which is much larger than the O[M(N, + N,>] operations in 
using local centroids, when M is reasonably smaller than N, or N, . Both of these 
methods are much faster than enclosing the region of interest in a periodic box and 
using Fast Fourier Transforms [20]. Thus the method employed is the most economical 
without sacrifice of accuracy, known to the author. 

It is natural to ask which aspect of the procedure limits the accuracy of the numerical 
solution. Since a vortex sheet is smeared over a region of the order of cell area, the 
grid spacing is expected to play an important role. In fact, Langdon [24] presents an 
analysis of grid effects in calculating the velocity and shows that this is the case. The 
author conducted several tests on particular vortex sheets where the velocity field is 
known analytically at a fixed time. Typically, the calculated sheet velocity resembles 
the exact velocity, superimposed with a small random component whose wavelength 
is of the order of the grid spacing. This behaviour is most likely a result of the bilinear 
interpolation used when computing the velocity at the vortex markers. However, it is 
the growth of the errors in the position of the sheet that is important and Langdon’s 
[24] analysis does not fully address this aspect of the numerics. 

A number of authors [24-271 have explored the errors arising in the ‘Cloud in 
Cell” and related methods when applied to the flow of particles in a plasma. They are 
concerned with the accuracy of representation of the Coulombic force law between 
charged particles and have shown how this force is modified by the different redistribu- 
tion techniques. Their particles have a physical reality. Vortex markers on the other 
hand are a result of a numerical discretisation. In other words, whereas the motion 
of charged particles is the underlying structure to the continuum equations in plasma 
physics, point vortices are only a numerical representation of continuous vorticity 
distributions. The main question is how well does the “Cloud in Cell” method approxi- 
mate the motion of continuous vorticity distributions. At present, analysis does not 
answer this question, and the best approach is to test the method on flows where some 
information is available. 

III. TESTING THE METHOD 

The initial unstable motion of the infinitesimally perturbed plane constant vortex 
sheet (the Kelvin Helmholtz instability [16]) is known analytically; the growth rate is 
proportional to the wave number. A sinusoidal perturbation with an amplitude 0.01 
and unit wavelength is taken as the initial condition for test runs. At each time step, 
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a cubic spline [22] is fitted through the vorticity markers (x, , ~3 as an approximation 
to the sheet. Provided the sheet is singlevalued, the amplitudes of the Fourier modes 
are calculated by using Fast Fourier Transforms [21]. The calculated behaviour of 
the amplitudes is then compared with theory. 

Two of the grid boundaries are chosen one wavelength of the imposed perturbation 
apart, and periodic conditions are applied in this direction on these boundaries. The 
number of vorticisy markers and grid intervals are separately varied to observe their 
influence on the sheet motion. The timestep is reduced well below the necessary value 
for accuracy to study the initial motion in detail. The sheet develops small scale 
instabilities of the order of the grid spacing, and the way this occurs proves interesting, 

FIG. 3. Cells affected in redistribution process. 

Fig. 3 shows a vortex sheet intersecting grid lines. The cells in which redistribution 
takes place are shaded. The smooth vortex sheet is replaced by a jagged array of cells, 
and it is at the places marked A and B, for instance, that the biggest perturbation to 
the sheet occurs due to the anistropic redistribution process. The distance AB is the 
dominant small scale introduced, while other small scales are essentially suppressed. 
By that it is meant that structures are formed along the sheet at places such as A and N, 
which initially resemble small spirals, and the sheet is relatively smooth between them, 
This effect of the grid has been seen before, but in a less obvious way and merely 
reported as an anomalous instability [1X]. 

The grid is refined from 17 x 17 through to 129 x 129, and the dominant smah 
scale wavenumber increases as more grid lines intersect the sheet. The small scales also 
occur at earlier times and both these effects can be seen in Fig. 4: which shows the 
position of the sheet at t = 0.06/U Where 2U is the jump in velocity across the unper- 
turbed sheet. The large scales related to the sinusoidal perturbation have growth rates 
in good agreement with non-linear theory to second order terms in the perturbation 
amplitude, higher order terms being negligible. Provided the number of vorticity 
markers is greater than two per cell,; it has little influence on the large scale motion, 
but it does affect the detailed description of the smaller scales. 

To check the time integration, the leap-frog scheme was substituted for Eq. (II) 
with little change in results. However, at the suggestion of a referee, further tests 
were conducted using a modified Euler integration, i.e., 

ji - &O> + %z(X,) At n- 

x,(t + At) = x,(t) + 0.5(Zfn(Xn> f zf,(*Q) dt 

(i4a) 

(24bji 
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and similarly for tin(t + At). ‘This method is stable and second order accurate. No 
change was observed in the generation of small scale structures and the only change 
in the large scale behaviour was a slight (~10 %) d ecrease ia the size of the wing rip 
vortex structure. The significant difference was an improvement in the vorticity 
distribution at the center of the wing tip vortex structure, and this difference will be 
emphasized in the following sections where appropriate, while Eq. (11) is used for the 
time integration for economical reasons since Eq. (14) requires twice as many velocity 
determinations. However, for calculations requiring internal details of the vortex 
structures, it is recommended that Eq. (14) be used. 

The conc1usio.n of these tests is that the large scale sheet motion is accurately 
calculated, but that small scale perturbations are introduced artificially by the grid. The 
perturbations initially take on the form of small spirals, but the sheet soon loses its 
definition and small scale structures appear. These structures then amalgamate in a 
manner reminiscentjof the mixing layer [29, 301. Thus the technique may lead to an 
adequate description of the final vortex structure and this aspect is considered in the 
applications described below. 

IV. FIRST APPLICATION 

The vortex sheet lies initially along -B < x < B, y = 0 and has strength related 
to the circulation shed at the trailing edge. For an elliptically loaded wing, this 
circulation is 

r(x) = -2T/,B(l - (x/B)~)~‘~ fi5) 

where Vi is the initial downwash velocity. Non-dimensional variables are introduced 
by scaling distances with B, time with B/V, and the circulation with I/,B. Eq. (15) reads 

The results are shown as a series of vorticity distributions at different time levels in 
Fig. 5. The number of points used is 2000 each representing the same amount of 
circulation, but only half are plotted for practical purposes. The grid size is 129 x 129, 
and with 40 local centroids, it takes 3.2 sets. on an IBM 370/l% computer to update 
the velocity markers; 1.7 sets. of this is spent in solving Poisson’s equation. The most 
striking features are the emergence of small scale structure and the smoothing of the 
spiral core. The large scale structure stays well defined, even though small scale 
structures developed outside the spiral region are convected into ii and absorbed. This 
behavior is pleasingly similar to some experimental observations [28]. It is interesting 
to note that the small scale structures emerge first in regions where the motion of 
point vortices becomes chaotic in previous work, that is: inside the spiral and on the 
lower part of the outer arm of the spiral [13]. 
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FIG. 5. Vorticity distributions for the roll up behind an elliptically loaded wing at different 
times, Y,r/B = 0.10, 0.3, 0.5, 1.0. 
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As a check on the accuracy of the method, two invariants of the motion are moni- 
tored during the calculation. One is the spanwise component of the hydrodynamic 
impulse and its computed value has a relative error of lO-a. The Kirchhoff-Routh 
path function is the other, but the computed value varies slowly with time. Since it 
proves too expensive to calculate this function for the complete collection of vorticity 
markers, oniy local centroids are used and a 10 y/, relative error was found. Tests 
indicate that the error decreases when more points are included. Although the 
computed function is approximate, its slow variation suggests reasonable invariance. 

Superimposed on the vorticity distribution at time r = 1.0 B/T/, in Fig. 5 are the 
positions of the point vortices obtained by Moore [13] in the vicinity of vortex 
structure. The agreement is good despite the use of Eq. II for the time integration 
whereas Moore used a more accurate Runge-Kutta scheme. If Eq. 14 is used for the 
time integration, the vorticity is more concentrated at the center of the wing tip 
vortex with a smaller area of uniform vorticity. The fall off in the vorticity distribution 
in the outer regions of the structure follows more closely the inviscid predictions. 

The fraction of vorticity rolled up is also calculated using a definition given by 
Moore [13], that is, the fraction of markers with II > N where N is determined from 
xN = max x, , and increasing IZ counts markers along the sheet towards the core 
center. This fraction is shown in Fig. 6 as a function of tame. Initially the behaviour 
follows the similarity solution [2] and agrees well with Moore’s results. Thus the gross 
features obtained by point vortices are reproduced. The slight oscillation observed is 
due to the convection of small structures around and into the roll up region. 

FIG. 6. Fraction of circulation in roll up region as a function of time. Slope of straight line is 
from Kaden’s similarity solution. 

Another aspect of the results is presented in the velocity profiles shown in Fig. 7, 
They are spanwise scans through the core center of the vertical velocity component 
and are a measure of the tangential velocity around the core, The times chosen corre- 
spond to two of the four time levels in Fig. 5. Turns of the spiral and small scale 
structure at the core edge are evident by double peaks. The inner region resembles 
solid body rotation and this is consistent with radial profiles of the vorticity measured 
from the core center. The size of the inner region is decreased when using Eq, 1.4 
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FIG. 7. Vertical velocity profiles in the spanwise direction through the core center. 

instead of Eq. 11 leading to larger velocity peaks and narrower distances between 
maximum and minimum velocities. 

The maximum difference in the vertical velocity at a fixed time is a measure of the 
evolution of the vortex structure. Its time dependence is very close to a decay as 
t-lJ4, and this is predicted for a vortex structure with a viscous core matched to an 
outer flow specified by the similarity solution [I]. Moreover, the viscous core has 
solid body rotation at its center. This interesting parallel in behavior of the results 
deserves attention. 

We emphasize that the “Cloud in Cell” technique has produced a well defined 
rolled up structure. 

V. SECOND APPLICATION 

The second application of the method shows an interesting difference in the roll 
up of different parts of the vortex sheet. An initial circulation distribution is chosen 
by matching three sections so that the circulation and its derivative are continuous. 
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FIG. 8. Vorticity distribution for the roll up behind a wing with with a tip deployed at different 
time levels. The grid is 129 x 129. (a) t = 0.03, (b) t = 0.05, (c) t = 0.1, (d) t = 0.15, (e) t = 0.2, 
(f) f = 0.3. 
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t.. 0.2 

Fig. 8 (continued) 
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Fig. 8 (continued) 

For0 <x,(/l, 

q4 = r* f g (rl - To) x2 - $ (r, - r,> 2 (17a) 

where I’, is the maximum circulation. For A G x < B, 

r(x) = ax3 + bx2 + cx + d (17b) 

where a = -2[r, - (1 - Bz)1/2]/(A - B)3 - B/f(l - B”)‘/“(A - B)*], bz 

B/[2(1 - P)lj2(A - B)l - 344 + B)/2, c = -3uA2 - 2bA, d = T, - n-4” - 
BA2 - CA. For B < x < 1, elliptical loading is assumed, 

T(x) = (1 - X2)1/2 (Ire) 

This profile simulates the effect of a deployed Aap and the influence of the fuselage 
near x = 0. Roughly speaking, the fuselage influences the region, 0 -C x ==c A, the 
outboard edge of the flap the region, A < x < B, and the wing tip the region, 
B < x < 1. The values chosen for the constants are A = 0.3, B = 0.7, .Fo = 1.4, 
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i s 

FIG. 9. The same as Figs. 8a and c with refined grid, 257 x 257. 

I’, = 2.0, where the units are arbitrary since the interest is to demonstrate the feasibili- 
ty of the method rather than to obtain precise results. For this configuration three 
vortex structures are observed to develop, and Donaldson [31] has proposed a 
criterion which determines which part of the initial vortex sheet is later rolled up into 
these structures. His criterion corresponds to the regions defined by Eq. (17). 

Fig. 8 gives the vorticity distribution as time progresses and indeed three structures 
emerge. The grid is 129 x 129 and the total number of points, again with equal 
circulation, is 1950; 450 for the fuselage region, 964 for the flap region and 536 for 
the tip region. Only half the points are plotted and they are marked in different symbols 
for each region. The results show that the points A and Bare the appropriate demarca- 
tion of the initial circulation profile as proposed in 1311. 

Unlike the tip vortex, the fuselage and flap vortices emerge by an amalgamation 
process more reminiscent of the process in a mixing layer than the formation of a 
spiral. However the final structures have a form similar to the tip vortex. Since the 
initial development of the small scales is grid dependent, an important test of the 
results is to repeat the calculation with a finer grid. Fig. 9 shows the result for a grid, 
257 x 257, at the same times as Fig. 8a and SC. Although. the initial small scale 
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structures are different and occur at an earlier time, the emer,ging large scale structure 
has remarkable similarity. Even during the intermediatary stages of amalgamatiorr, 
the vorticity distribution appears reproduced. This illustrates the result found in 
independent testing, namely that large scale motion is accurately computed. 

Finally, a comment is in order about the behaviour of the angular momentum for 
both flows considered in this paper. The angular momentum for the region x’ > 0 is 
not an invariant of the motion. Milinazzo and Saffman [32] have shown that the 
angular momentum is reliably calculated by the “Cloud in Cell” technique. For an 
elliptically loaded wing, the angular momentum about the centroid increases by 
35 7; at f = 1.0 when the roll up is almost completed (fraction of rolled up vorticity 
is 85 7;). This indicates a limitation to the Betz approximation 1331. For the case of a 
wing with a flap deployed, the angular momentum about the centroids of each region 
is shown in Fig. 10. This is in sharp disagreement with the extension of the B&z 
approximation [31] and indicates a better understanding for the case of the roll tip 
with more than just a tip vortex may be required. Of tours: the dissipative process 
involved in the method will influence the angular momentum and that should. be 
born in mind when comparing with inviscid estimates. 

t 
1 I t I 

0 0.2 0.4 0.6 0.8 1.0 

FIG. 10. Angular momentum, A, normalized by its initial value for the three vortex structures 
as a function of time. 

VI. CONCLUSION 

The “Cloud in Cell” technique produces interesting results for the motion of vortex 
sheets. In particular small scale instabilities introduced by the grid destroy the defini- 
tier? of the sheet, but a process of amalgamation which is relatively insensitive to the 
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grid results in the emergence of large scale vortex structures, which are clearly defined 
since many vorticity markers can be used without high computing costs. The computa- 
tion can be continued if the study of the interaction of these structures is required. The 
properties of these structures agree well with previous calculations of vortex sheet 
motion using point vortices. 

The main disadvantage in using this technique is the loss of detail of the spiral 
nature of the vortex sheet roll up. Algorithms can be introduced which prevent the 
vortex sheet from kinking and which may lead to more clearly described spirals. 
However it is strongly recommended that more detailed studies of the numerical 
errors are required before ad hoc modifications are introduced to reproduce “expected” 
vortex sheet behavior. For these reasons, this technique holds good prospects for 
improving our understanding of vortex sheet roll up. 
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